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AN EFFICIENT BINOMIAL METHOD FOR PRICING ASIAN 

OPTIONS 

Abstract. We construct an efficient tree method for pricing path-

dependent Asian options. The standard tree method estimates option prices at each 

node of the tree, while the proposed method defines an interval about each node 

along the stock price axis and estimates the average option price over each 

interval. The proposed method can be used independently to construct a new tree 

method, or it can be combined with other existing tree methods to improve the 

accuracy. Numerical results show that the proposed schemes show superiority in 

accuracy to other tree methods when applied to discrete forward-starting Asian 

options and continuous European or American Asian options. 
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1. Introduction 

An option is a financial derivative which gives the owner the right, but not the 

obligation, to buy or sell an underlying asset for a given price on or before the 

expiration date. From the seminal papers of Black and Scholes (1973) and Merton 

(1973), the trading volume of options has been increased and exotic options with 

nonstandard payoff patterns have become more common in the over-the-counter 

market. Among them, an option with the payoff determined by the average 

underlying price over some pre-defined period of time is called an Asian option. 

An Asian option has been popular since it could reduce the risk of market 

manipulation of the underlying asset at maturity and the volatility inherent in the 

option. However, these Asian options based on arithmetic averages cannot be 

priced in a closed-form, and one needs to rely on its numerical approximation 

instead. 

There have been many approaches to approximate the value of exotic options, 

such as binomial tree method, Monte Carlo simulation, finite difference method for 

solving Black-Scholes partial differential equations etc. Both the Monte Carlo 

method and finite difference method suffer from the difficulty to deal with early 

exercise without bias, whereas the binomial tree method by Cox, Ross and 
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Rubinstein (1979) are very popular due to its ease of implementation and simple 

extension to American type options. However, due to the averaging nature of Asian 

options, the number of averaging nodes in binomial tree grows exponentially. 

Therefore straightforward extension of the standard binomial method to Asian case 

is not possible in practice. In order to solve this shortage of binomial method, Hull 

and White (1993) considered a set of representative averages at each node 

including minimum and maximum average values. Employing this set of 

representative averages makes the binomial model feasible for pricing Asian 

options, though it still suffers the lack of convergence, see Costabile, Massabo and 

Russo (2006) and Forsyth, Vetzal and Zvan (2002). For a discrete monitored Asian 

option, Hsu and Lyuu (2011) proposed a quadratic-time convergent binomial 

method based on the Lagrange multiplier to choose the number of states for each 

node of a tree. 

 In this paper, based on the cell averaging approach in Moon and Kim (2013), 

small bins on the asset price axis, called cells, are defined about each node of the 

tree and then average option price over each cell has been computed and updated in 

time. See Section 2 for details. The binomial method of Hsu and Lyuu (2011) for 

discrete monitored Asian options and that of Hull and White (1993) for continuous 

Asian options have been modified for improvement with the help of cell averaging 

method. Numerical experiments in section 4 show that the proposed cell averaging 

binomial method gives more accurate results compared to other existing 

computational methods. 

The outline of the paper is as follows. In section 2 we explain the problem and 

introduce the cell averaging binomial method. In section 3 we extend the cell 

averaging binomial method to discrete and continuous monitored Asian options. In 

section 4 we compare the accuracy and efficiency of the existing tree methods with 

those of the cell averaging binomial method. We finally summarize our 

conclusions in section 5. 

2. Cell Averaging Binomial Methods 

Let us consider the price of the underlying asset as a stochastic process 

{ ( ), [0, ]}S t t T  which satisfies the following stochastic differential equation: 

 ( ) ( )  + ( ) ( )dS t S t dt S t dW t  , 0 t T  ,                 (1) 

where   is an expected rate of return,   is a volatility, T  is an expiration 

date, and ( )W t  is a Brownian motion. From the Ito formula in Øksendal (1998), 

( ) ln( ( ))X t S t  satisfies 

2( ) ( / 2)   ( )dX t dt dW t     , 0t  . 

In the risk-neutral world, the value of the European option can be computed by the 

discounted conditional expectation of the terminal payoff, 

 ( )( , ) ( ( )) | ( )r T tV x t e E X T X t x    , 

where ( ( ))X T  is the payoff at t T . Without loss of generality, we denote 

again the risk neutral process to be ( )X t  with drift rate equal to the risk-free 

interest rate r , instead of   in (1). If we consider a continuous dividend yield 

q , the drift rate becomes r q . 
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2.1. The binomial model 

Let us first discretize the time period  0,T  into N  intervals of the same 

length /t T N  , 
0 10 ... Nt t t T     . The standard binomial method by 

Cox, Ross and Rubinstein (1979) assumes that the asset price ( )nS t  at 
nt t  

moves either up to ( ) nS t u  for exp( ) 1u t    or down to ( ) nS t d  for 

1/d u  and 0,  1,  ,  1n N    with probabilities ( ) / ( )r tp e d u d    

or 1 p , respectively, or ( )nX t  in log at nt t  moves either up to ( )nX t h  

or down to ( )nX t h  where lnh u . Let 0 (2 )n

jX X j n h    denote the 

values at nt t n t    for 0,  1,  ,  j n  , with 
0(0)X X . Then the standard 

binomial method calculates the payoffs of the option at expiry, ( )N N

j jV X   for 

0,1,...,j N , and computes the option price 
0

0 0( ,0)V V X  by backward 

averaging, 

( , ) ( ( ,  )  (1 ) ( ,  ))r tV x t e pV x h t t p V x h t t        ,           (2) 

where 
n

jx X , 0,  ,  j n  , and 1,  2,  ,  0n N N    .  

The binomial method approximation converges to the Black-Scholes value as 

the number of time steps, N , tends to infinity, see the general theory in Kwok 

(1998), Clewlow and Strickland (1998), Lyuu (2002) and Higham (2004). 

However, it is widely reported that the convergence is not monotone and the saw-

tooth pattern in the sequence of approximations makes the binomial approximation 

less attractive. 

2.2 The cell averaging binomial model 
In order to reduce the saw-tooth patterns in the sequence of approximations in 

the standard binomial method, we employ the cell averaging method. Let us first 

divide the interval 0 0( 1) , ( 1)X N h X N h       on the X -axis into 1N   

non-overlapping equidistant intervals of length 2h , called cells, centered at points 

0 (2 )X j N h  , 0,  ,  j N  , then compute average option payoffs on each 

cell centered at 
n

jX  at expiry Nt t , 

  
1

( ) d
2

N
j

N
j

X h
N

j
X h

V
h

 



  ,  0 , ,j N                             (3) 

where ( )   is the payoff function at expiry. If (2) is satisfied at every point 

,n n

j jX h X h       in the cell at time nt , then the average option price 

1
( , )d

2

n
j

n
j

X h
n

j n
X h

V V t
h

 



   satisfies the following backward averaging relation 

       1 1

1  1n r t n n

j j jV e pV p V   

                                (4) 

See Figure 1. Appropriate modification will be needed if (2) does not hold at 
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every point ,n n

j jX h X h      . For instance, see Moon and Kim (2013) for 

the case of barrier options. Then cell averages of the option values at expiry (3) can 

be updated iteratively, which eventually leads to the average of the option price 
0

0V  on 0 0,X h X h     at 0t  . 

 
Figure 1 : Comparison of backward averaging between the standard tree  

method (Left) and the cell averaging tree method (Right). 

 

Figure 2 compares the standard binomial method (dash) and the cell averaging 

binomial method (solid) for the European up-and-out barrier put option price. The 

figure shows that this cell averaging idea reduces jig-saw oscillations. 

 
Figure 2 : Parameters: The initial stock price (0) 100S  , the risk-free interest 

rate 0.05r  , the volatility 0.3  , strike price 90K  , barrier 105H   

and the maturity 1T   for a European up-and-out barrier put option. Comparison 

between standard binomial (dash) and cell averaging binomial (solid) lattice mod-

els. Cell averaging produces smoother convergence. 

3. Asian Options 

Now we extend the cell averaging binomial method in section 2 to path-

dependent Asian options. As it has been known, there do not exist explicit closed-

form analytical solutions for arithmetic Asian options because the arithmetic 

average of a set of lognormal random variables is not log-normally distributed. For 

that reason, many numerical approaches have been proposed. We first consider 

discrete monitored Asian options in Section 3.1 and modify the method of Hsu and 

Lyuu (2011) to price it. Then we improve the method of Hull and White (1993) in 



 

 

 

An Efficient Binomial Method for Pricing Asian Options 

_________________________________________________________________ 

155 

 

Section 3.2 to price the continuous Asian option. 

3.1 The Discrete Monitored Asian option 
The discretely monitored Asian option is often found in practice. The payoff of 

Asian call option with strike price K  at the expiry date T  is given by the 

following : 

           
1

1
m a x ( ) , 0

n

i

i

S t K
n 

 
 

 
                              (5) 

where n  is the number of monitor points and the payoff of discrete type 

arithmetic average Asian call option is monitored at n  time points, 

1 20 nt t t T     . We assume each time interval between two adjacent 

monitor points is partitioned into I  time steps, and I  is called intraday. Then 

we see that the monitor points are at times 0,  ,  2 ,  ,  I I nI  and the whole 

number of time steps is N nI . For the standard European-style discrete Asian 

call, the payoff at expiry is 

              
0

1
m a x , 0

1

n

iI

i

S K
n 

 
 

 
  

whereas the forward-starting discrete Asian option omits the initial 0S  and has 

the payoff 

             
1

1
m a x , 0

n

iI

i

S K
n 

 
 

 
  

In order to be self-contained, we start with explanation of the binomial method 

by Hsu and Lyuu (2011) which follows the standard binomial method suggested by 

Cox, Ross and Rubinstein (1979). Let ( , )N i j  denote the node at time i  that 

results from j  down moves and i j  up moves. Then the price sum to expiry 

date for a price path 0 1( ,  ,  ,  )iS S S , P , called the running sum, is computed 

by 

 
0 /

2 /

for standard Asian options

 for forward-starting Asian optio

        

s,

 

n

 I i I I

I I i I I

S S S
P

S S S

  

  

  
 

  

 

where ·    denotes floor function and 0 i N  . Since the pricing of Asian 

option using binomial lattice produces 2N
 possible paths for each time step N , 

Hsu and Lyuu (2011) suggested a discrete binomial method for Asian option 

pricing, where they proposed the running sum P  of the form  

0

( 1)( 1)( 1) 2( 1)
0, , , , , ( 1)   if 0

  if =0

ij

ij ij ij

k n Kn K n K
n K i

k k kP

S i

   
 

 



     (6) 

for standard Asian option 
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( 1)2
0, , , , ,  if 0 

    
if 0

0

ij

ij ij ij

k nKnK nK
nK i

k k kP
i




 




                     (7) 

for forward-staring Asian option where 1ijk   represents the number of states 

considered for each node ( , )N iI j . Here 
ijk  is computed by  

    

1

3

2 2

1

3

2
1 0

( , , )

2
( , , )

ij
n sI

s t

B iI j p

cIn i
k

B sI t p

s 

 
 
 

 
 
 



    ,                           (8) 

where ( , , ) (1 )i j j
i

B i j p p p
j

 
  
 

 , and c  is the average number of states per 

node. If the 3-tuple ( , , )iI S P  denotes the current state, the corresponding option 

value ( , , )iIV iI S P  can be computed by 

 
2 2

0

1
( , , )  (( 1) ,  ,  )

I
I l I l

iI l iII
l

V iI S P p V i I Su P Su
R

 



   , 

where 
2

0

iI jS S u  , exp( )R r t  , and the associated branching probabilities 

are  

    (1 )I l l

l

I
p p p

l

 
 





  

for each branch 0, ,l I  , and 0,1, , ( 1)i n   . When ( 1)iIP n K  ,  

 ( )
( )

{ ( ) } / (
 if 1

   
  if 1.

  

1)

( , , ) 1
{( ) / ( 1) }

1

iI

n i I
iI n i I I

iI I

R

R

P n i S n K

V iI S P R
R P SR n K

R


 

    

 
  





 


 

For forward-starting discrete Asian options, the similar formulas hold  

( )
( )

{ ( ) } /

( , , ) 1
{( ) / }

1

if 1

i  1
     

f

iI

n i I
iI n i I I

iI I

P n i S n K

V iI S P R
R P SR n K

R

R

R


 

  


  


 





 

when iIP nK . Otherwise, linear interpolation is computed from the two 

bracketing running sums' corresponding option values to obtain : 
2 2(( 1) , , )I l I l

iIV i I Su P Su     

2 2

1, 1,

( 1) ( 1)
( 1) , , ( 1) (1 ) ( 1) , ,I l I l

l l l l

i j l i j l

n K n K
V i I Su s V i I Su s

k k
  

   

    
          

   

, 
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where 0 1l   for 0,1, ,l I  . 

Now let us apply cell averaging algorithm to this discrete model over the cells 

on the X -axis as in Section 2.2. For example, the cell-averaged payoffs at expiry 

for standard discrete Asian call option are computed as follows: 

 
*

*

1 1
 ,0  d

2 1
 max

x h
x

x h
P e K x

h n





 
  

 
 , 

where 
* 2ln I lx Su   for S , the stock price at ( 1)t n I t   . Algorithm 1 

shows the cell averaging tree algorithm for pricing the European standard discrete 

Asian call option based on method of Hsu and Lyuu (2011) method. 

 
3.2.  The Continuous Asian option 

Now we consider the case of a continuously monitored Asian option. The 

payoff for continuously monitored Asian call option with strike price K  at the 

expiry date T  is given by the following : 
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0

1
m a x ( ) d - K , 0

T

S
T

 
 
 
 
                         (9) 

Let us consider Hull and White (1993) binomial model. As explained above, 

pricing of Asian option using binomial tree produces 2N
 possible paths for each 

time step N . Hull and White (1993) proposed a binomial model for continuous 

Asian options to solve this problem. They chose the representative average values 

of the form 
0

mhS e  for each node, where h  is a fixed constant, and 
0 0,0S S  

is the known initial asset price. Let 
iA  be the representative averages, and let 

min

iA  and 
max

iA  be the minimum and maximum representative average, 

respectively at time i t , 1,2, ,i n . Then m  is the smallest integer chosen 

to satisfy by following inequalities : 

 0 1 1,0

1

1

min mh min

i i iA S e iA dS
i



   


, 

 0 1 1, 1

1

1

max mh max

i i i iA S e iA uS
i

    


, 

See Costabile, Massabo and Russo (2006) for details. We can also compute the 

averages of the form 
0

khS e , where 1, 2, , 1k m m m        for each time 

step. Hull and White model also follows the standard lattice binomial method 

proposed by Cox, Ross and Rubinstein (1979) and use the backward induction 

procedure 

  ( , , ) ( 1, 1, ) ( 1, , )r t

u dV i j k e pV i j k qV i j k      . 

( 1, 1, )uV i j k   is generated by using linear interpolation as follow. First, 

,( 1) / ( 2)i i ji A uS i      is computed and let kA  be the smallest representative 

average greater than ,( 1) / ( 2)i i ji A uS i     . Then ( 1, 1, )uV i j k   is the 

interpolation between two option values associated to 1kA   and kA . The value 

( 1, 1, )dV i j k   is derived in a similar way. 

Now, let us modify Hull and White model for improvement by using cell 

averages in Section 2.2. For instance, we replace the payoff in of Hull and White 

model max( ,0)nA K  for the representative averages nA  at the last time step 

with  

         
0

0

1
m a x ( , 0 )   d x

2

kh

kh

S e

S e
x K








                              (10) 

where   is fixed constant and k  represents all integers between m  and m . 

Algorithm 2 shows the cell averaging tree algorithm for pricing the European 

continuous Asian call option based on method of Hull and White (1993).  
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4. Numerical Experiments 

This section gives numerical results of cell averaging when applied to exotic 

options such as Bermudan option or path-dependent options including Discrete 

forward starting Asian option and Continuous Asian option. We find that the cell-

averaged values are more accurate than other schemes in the sense that these 

values fall in the interval containing the exact value faster (Bermudan option) or 

converge to a limiting value faster (path-dependent Asian options). Section 4.1 

shows that cell averaging can be used independently to derive a cell averaging tree 

method. Section 4.2 and Section 4.3 show that cell averaging can be easily 

combined with other existing tree methods as well. Section 4.2 shows that cell 
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averaged values are so smooth that the Richardson extrapolation can be used 

further to improve the accuracy. Section 4.3 shows that cell averaging can be 

extended to price even American options with ease. 

4.1. Bermudan option 

In this section, we implement the cell averaging method to construct a tree 

method to price the Bermudan call option with the initial stock price 
0 100S  , 

the risk-free interest rate 0.05r  , the dividend 0.1q  , the volatility 0.2  , 

strike price 100K   and the maturity 3  . When there are 2m   exercising 

points, Anderson and Broadie (2004) provided using a binomial method with 

2000n   time steps a upper bound of 7.23 and a lower bound of 7.08 for the 

option price whose exact value is 7.18. See Table 1. See also Anderson and 

Broadie (2004) for the computational results by Anderson and Broadie and the 

explanations on them. The proposed cell-averaged values fell into this bound with 

as low as 200n   time steps. In addition, the bound of Anderson and Broadie 

has the width of 0.15 with 2000n   time steps while the variation of cell-

averaged values for 400 2000n   is only 0.03, which implies that the 

proposed cell averaging scheme converges fast. Similar results are observed for the 

Bermudan option with 10m   exercising points and the American option. 

 
Table 1 : Parameters: The initial stock price (0) 100S  , the risk-free interest 

rate 0.05r  , the dividend 0.1q  , the volatility 0.2  , strike price 

100K   and the maturity 3T   for Bermudan call option and m  is the 

number of discrete exercising points. AB represents the lower and upper bounds 

for the option price by Anderson and Broadie (2004) using a binomial lattice with 

2000n   time steps and 1.06f  . f  gives the ratio of the critical exercise 

price under the suboptimal policy to the optimal critical exercise price (See 

Anderson and Broadie (2004) for details). Anderson and Broadie also presented 

exact values (MC-exact) in Anderson and Broadie (2004). 

4.2. Discrete Asian option  

respectively. Since cell averaging reduces oscillations as explained in Section 

2.2, the cell averaged values can be later improved by the Richardson 

extrapolation. Table 2 shows the comparison of several numerical schemes by 

Večeř, Tavella and Randall (TR), Curran, Hsu and Lyuu (HL) with the cell 
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averaging modification of HL (HL-CA) using the Algorithm 1, and the Richardson 

extrapolation of HL-CA method (HL-CA٭) for the initial price 
0 95,100,105S   

and various values of the number of monitor points n . The number of time steps 

N nI . See Hsu and Lyuu (2011) for detailed explanations on those schemes 

including the parameters used for the simulations. 

In Table 2, for 
0 95S  , the variations in HL-CA٭ method from 250n   to 

500n   and from 500n   to 1000n   are only 0.002 and 0.001, 

respectively. On the other hand, corresponding variations in other methods are 

about 0.02 and 0.01. Similar differences are observed for 0 100S   or 0 105S  . 

Thus, the application of cell averaging results in sufficiently smooth convergence 

and the additional application of the Richardson extrapolation (HL-CA٭) produces 

very rapid convergence. The proposed method is, in this sense, very competitive 

with many other existing methods. 

 
Table 2 : Parameters: A discrete forward starting Asian call option is considered 

with the strike price 100K  , the time to maturity 1  , the volatility 0.4  , 

the interest rate 0.1r  , and the dividend rate is not considered. Parameters for 

numerical schemes: intraday period 10I   and the average number of states per 

node 50c   for Hsu and Lyuu (2011) are considered. The table shows the 
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comparison of various numerical schemes by Večeř, Tavella and Randall (TR), 

Curran, Hsu and Lyuu (HL) with the cell averaging modification of HL (HL-CA) 

using the Algorithm 1, and the Richardson extrapolation of HL-CA method (HL-

CA٭) for the initial price 
0 95,100,105S   and various values of the number of 

monitor points n  (and the number of time steps N nI ) 

4.3. Continuous Asian option 

In this section, we now apply the cell averaging method to value another path-

dependent option, a continuous Asian call option, based on the Hull and White 

(1993) method and then extend it to value an American option.  

The initial stock price 
0 50S  , strike price 50K  , risk-free interest rate 

0.1r  , volatility 0.3  , expiry date 1T  , and dividend rate 0q   for 

European Asian call option. The parameters for numerical scheme by is 

0.001h  . Figure 3 shows the errors in the Hull and White binomial method and 

the cell averaging Hull and White method as the number n  of time steps 

increases, when 0.5   is used for the Algorithm 2. The solution computed by 

Monte Carlo simulations based on 
410
 time steps and 

810  simulation runs is 

used when the error is measured, which means that Monte Carlo value has statistic 

error of 
4(10 )O . The figure shows that the error from the cell averaged values 

decreases to zero faster. Table 3 shows the option values from Hull and White 

binomial method (HW) and the cell averaging HW method (HW-CA) using the 

Algorithm 2 with 0.5,0.6,0.7  , and 0.8 as the number of time steps, n , 

increases. The values in parenthesis are the errors. We see that the convergence of 

the cell averaging HW-CA values is faster than that of HW values.  

 
 Figure 3 : Parameters: the initial stock price 0 50S  , strike price 50K  , 

risk-free interest rate 0.1r  , volatility 0.3  , expiry date 1T  , and 

dividend rate 0q   for European Asian call option. The parameters for 

numerical scheme by Hull and White (1993) and Algorithm 2 are 0.001h   and 

0.5  . The figure shows the errors in option values from Hull and White 
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binomial method and the cell averaging HW method using the Algorithm 2 as the 

number of time steps, n , increases. 

 

 
Table 3: Parameters: the initial stock price 0 50S  , strike price 50K  , risk-

free interest rate 0.1r  , volatility 0.3  , expiry date 1T  , and dividend 

rate 0q   for European Asian call option. The parameters for numerical scheme 

by Hull and White (1993) and Algorithm 2 are 0.001h   and 

0.5,0.6,0.7,0.8  . The table shows the option values from Hull and White bi-

nomial method (HW) and the cell averaging HW method (HW-CA) using the Al-

gorithm 2 as the number of time steps, n , increases. The values in parenthesis are 

the errors. The solution computed by Monte Carlo simulations (MC) based on 
410
 time steps and 

810  simulation runs is used when the errors are measured. 

A simple extension of the Algorithm 2 for an exercise of the option results in 

Table 3. 

 
Table 4: Parameters: the initial stock price 0 50S  , strike price 50K  , risk-

free interest rate 0.1r  , volatility 0.3  , expiry date 1T  , and dividend 

rate 0q   for American Asian call option. The parameters for numerical scheme 

by Hull and White (1993) and Algorithm 2 are 0.001h   and 

0.5,0.6,0.7,0.8  . The table shows the option values from Hull and White 

binomial method (HW) and the cell averaging HW method (HW-CA) using the 

Algorithm 2 as the number of time steps, n , increases. 

The cell averaging method can be easily extended to American options. Table 4 

considers an American Asian call option with the same parameters as those for a 

European Asian call option above using the Hull and White method and the cell 

averaging Hull and White model. 

5. Conclusions 
We propose the cell averaging method for pricing the exotic options, in 

particular path-dependent Asian options. Cell averaging reduces the oscillations of 



 

 

 

Kyoung-Sook Moon, Yunju Jeong,  Hongjoong Kim 

__________________________________________________________________ 

164 

 

the tree method and thus improves the accuracy. It can be used to derive an 

independent tree scheme or to be combined with existing methods. It can be even 

combined with the extrapolation as in Section 4.2 to enhance the accuracy using 

the fact that the corresponding result is smooth or it can be easily extended to value 

American path-dependent options as in Section 4.3. 

Algorithms 1 and 2 show that the introduction of cell averaging does not 

increase computational loads much, while numerical experiments validate that cell 

averaging improves the accuracy of Hsu and Lyuu method and Hull and White 

method pricing path-dependent Asian options. For instance, cell averaging gives 

better representative averages than those proposed by Hull and White. 

We are currently working on mathematical analysis on the order of 

convergence of HL-CA and HW-CA methods for path-dependent Asian options. 
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