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AN EFFICIENT BINOMIAL METHOD FOR PRICING ASIAN
OPTIONS

Abstract. We construct an efficient tree method for pricing path-
dependent Asian options. The standard tree method estimates option prices at each
node of the tree, while the proposed method defines an interval about each node
along the stock price axis and estimates the average option price over each
interval. The proposed method can be used independently to construct a new tree
method, or it can be combined with other existing tree methods to improve the
accuracy. Numerical results show that the proposed schemes show superiority in
accuracy to other tree methods when applied to discrete forward-starting Asian
options and continuous European or American Asian options.
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1. Introduction

An option is a financial derivative which gives the owner the right, but not the
obligation, to buy or sell an underlying asset for a given price on or before the
expiration date. From the seminal papers of Black and Scholes (1973) and Merton
(1973), the trading volume of options has been increased and exotic options with
nonstandard payoff patterns have become more common in the over-the-counter
market. Among them, an option with the payoff determined by the average
underlying price over some pre-defined period of time is called an Asian option.
An Asian option has been popular since it could reduce the risk of market
manipulation of the underlying asset at maturity and the volatility inherent in the
option. However, these Asian options based on arithmetic averages cannot be
priced in a closed-form, and one needs to rely on its numerical approximation
instead.

There have been many approaches to approximate the value of exotic options,
such as binomial tree method, Monte Carlo simulation, finite difference method for
solving Black-Scholes partial differential equations etc. Both the Monte Carlo
method and finite difference method suffer from the difficulty to deal with early
exercise without bias, whereas the binomial tree method by Cox, Ross and
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Rubinstein (1979) are very popular due to its ease of implementation and simple
extension to American type options. However, due to the averaging nature of Asian
options, the number of averaging nodes in binomial tree grows exponentially.
Therefore straightforward extension of the standard binomial method to Asian case
is not possible in practice. In order to solve this shortage of binomial method, Hull
and White (1993) considered a set of representative averages at each node
including minimum and maximum average values. Employing this set of
representative averages makes the binomial model feasible for pricing Asian
options, though it still suffers the lack of convergence, see Costabile, Massabo and
Russo (2006) and Forsyth, Vetzal and Zvan (2002). For a discrete monitored Asian
option, Hsu and Lyuu (2011) proposed a quadratic-time convergent binomial
method based on the Lagrange multiplier to choose the number of states for each
node of a tree.

In this paper, based on the cell averaging approach in Moon and Kim (2013),
small bins on the asset price axis, called cells, are defined about each node of the
tree and then average option price over each cell has been computed and updated in
time. See Section 2 for details. The binomial method of Hsu and Lyuu (2011) for
discrete monitored Asian options and that of Hull and White (1993) for continuous
Asian options have been modified for improvement with the help of cell averaging
method. Numerical experiments in section 4 show that the proposed cell averaging
binomial method gives more accurate results compared to other existing
computational methods.

The outline of the paper is as follows. In section 2 we explain the problem and
introduce the cell averaging binomial method. In section 3 we extend the cell
averaging binomial method to discrete and continuous monitored Asian options. In
section 4 we compare the accuracy and efficiency of the existing tree methods with
those of the cell averaging binomial method. We finally summarize our
conclusions in section 5.

2. Cell Averaging Binomial Methods

Let us consider the price of the underlying asset as a stochastic process

{S(t),t €[0,T]} which satisfies the following stochastic differential equation:

dS(t) = pS(t)dt + oS()dW (), O0<t<T, (1)
where x is an expected rate of return, o is a volatility, T is an expiration
date, and W (t) is a Brownian motion. From the Ito formula in @ksendal (1998),
X () =In(S(t)) satisfies

dX (t) =(u—oc’/2)dt + odW(t), t>0.

In the risk-neutral world, the value of the European option can be computed by the
discounted conditional expectation of the terminal payoff,

V(x,t)=e "TUE[AXT)) | X(t) =x],
where A(X(T)) is the payoff at t=T . Without loss of generality, we denote
again the risk neutral process to be X(t) with drift rate equal to the risk-free
interest rate r, instead of 4« in (1). If we consider a continuous dividend yield
q, the drift rate becomes r—q.
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2.1. The binomial model

Let us first discretize the time period [O,T] into N intervals of the same
length At=T/N, 0=t, <t <..<ty =T . The standard binomial method by
Cox, Ross and Rubinstein (1979) assumes that the asset price S(t,) at t=t,
moves either up to S(t,) u for u :exp(a\/ﬁ)>1 or down to S(t,)d for
d=1/u and n=0,1 ..., N—-1 with probabilities p=(e" —d)/(u-d)
or 1-p, respectively, or X(t,) inlogat t=t moveseitherupto X(t,)+h
or down to X(t,)—h where h=Inu. Let X{=X,+(2j—n)h denote the
valuesat t=t =nAt for j=0,1 ..., n,with X(0)=X,. Then the standard
binomial method calculates the payoffs of the option at expiry, VjN =A(X jN) for
j=0,1,..,N, and computes the option price V, =V (X,,0) by backward
averaging,
V(x,t)=e ™ (pV(x+h, t+At) + (1-p)V(x—h, t+AL)), 2
where x=X{, j=0, ..,n,and n=N-1, N-2, ..., 0.

The binomial method approximation converges to the Black-Scholes value as
the number of time steps, N, tends to infinity, see the general theory in Kwok
(1998), Clewlow and Strickland (1998), Lyuu (2002) and Higham (2004).
However, it is widely reported that the convergence is not monotone and the saw-
tooth pattern in the sequence of approximations makes the binomial approximation
less attractive.

2.2 The cell averaging binomial model

In order to reduce the saw-tooth patterns in the sequence of approximations in

the standard binomial method, we employ the cell averaging method. Let us first

divide the interval [XO —(N+Dh, X,+(N +1)h] on the X -axis into N +1
non-overlapping equidistant intervals of length 2h, called cells, centered at points
Xo+(2j—N)h, j=0, ..., N, then compute average option payoffs on each
cell centered at X atexpiry t=t,,

— 1 XN+h .

N _ —

Vit =on IXN A)d 1=0. N ®
where A(:) is the payoff function at expiry. If (2) is satisfied at every point
§e[Xf‘—h, Xf‘+h] in the cell at time t , then the average option price
V=

2hIx)-
an _ A-TAt ( pV 7 n+l (1_ p)\7jn+1) (4)

j+l

(5 )d&  satisfies the following backward averaging relation

See Figure 1. Appropriate modification will be needed if (2) does not hold at
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every point & e[X;‘ —h, XJT‘ + h]. For instance, see Moon and Kim (2013) for

the case of barrier options. Then cell averages of the option values at expiry (3) can
be updated iteratively, which eventually leads to the average of the option price

Vv, on [Xo—h, X0+h] at t=0.

xp Xp

x(k@

x(1—p)

Figure 1 : Comparison of backward averaging between the standard tree
method (Left) and the cell averaging tree method (Right).

Figure 2 compares the standard binomial method (dash) and the cell averaging
binomial method (solid) for the European up-and-out barrier put option price. The
figure shows that this cell averaging idea reduces jig-saw oscillations.
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Figure 2 : Parameters: The initial stock price S(0) =100, the risk-free interest

rate r=0.05, the volatility o=0.3, strike price K =90, barrier H =105
and the maturity T =1 for a European up-and-out barrier put option. Comparison
between standard binomial (dash) and cell averaging binomial (solid) lattice mod-
els. Cell averaging produces smoother convergence.
3. Asian Options

Now we extend the cell averaging binomial method in section 2 to path-
dependent Asian options. As it has been known, there do not exist explicit closed-
form analytical solutions for arithmetic Asian options because the arithmetic
average of a set of lognormal random variables is not log-normally distributed. For
that reason, many numerical approaches have been proposed. We first consider
discrete monitored Asian options in Section 3.1 and modify the method of Hsu and
Lyuu (2011) to price it. Then we improve the method of Hull and White (1993) in
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Section 3.2 to price the continuous Asian option.
3.1 The Discrete Monitored Asian option

The discretely monitored Asian option is often found in practice. The payoff of
Asian call option with strike price K at the expiry date T is given by the

following :
ma{%is (oK J (5)
i=1

where n is the number of monitor points and the payoff of discrete type
arithmetic average Asian call option is monitored at n time points,

0<t <t,<---<t <T. We assume each time interval between two adjacent

monitor points is partitioned into | time steps, and | is called intraday. Then
we see that the monitor points are at times O, I, 21, ..., nl and the whole

number of time steps is N =nl . For the standard European-style discrete Asian
call, the payoff at expiry is

1 n
max——>» S, —K
{n+1§‘ : }

whereas the forward-starting discrete Asian option omits the initial S, and has

the payoff
m a{EZS" -K j(
N

In order to be self-contained, we start with explanation of the binomial method
by Hsu and Lyuu (2011) which follows the standard binomial method suggested by
Cox, Ross and Rubinstein (1979). Let N(i, j) denote the node at time i that

results from j down moves and i— j up moves. Then the price sum to expiry

date for a price path (S,, S;, ..., S;), P, called the running sum, is computed
by
So+Si++S for standard Asian options
- Sy 4S5y ++ 5, for forward-starting Asian options,

where |- | denotes floor function and 0 <i < N Since the pricing of Asian

option using binomial lattice produces 2" possible paths for each time step N,
Hsu and Lyuu (2011) suggested a discrete binomial method for Asian option
pricing, where they proposed the running sum P of the form

k: —1)(n+1)K
o, (N+DK 200+DK G TDOEDK e ifieo
P= kij kij kij (6)

S, if i=0

for standard Asian option
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K 2nK ki, —DnK
L Jois S ,-,(’k) K ifi 20 o
R . ! ifi=0

for forward-staring Asian option where kij +1 represents the number of states

considered for each node N(il, j). Here k; iscomputed by

(B(il,j, p)f
— cln® i2

i 2 izloz(B(sl’zt’ p));

S

: (8)

where B(i, j, p) = ( jp“j(l— p)!, and c is the average number of states per
J

node. If the 3-tuple (il,S,P) denotes the current state, the corresponding option
value V(il,S,P,) canbe computed by

V(il,S,P,) Zp, V((i+Dl, su'™?, P, +Su'?y,

where S =Su"™?

are

: R=exp(rAt), and the associated branching probabilities

o E[:jp"' 1-p)

for each branch 1=0,...,1,and i=0,1,...,(n—=1). When P, >(n+1)K,

{R +(n-0)S}/ (n+1)-K ifR=1
V(ll y |I) (n I)I{(Pn +SR| 11R(n ol )/(n+1) K} ifR>1.

For forward-starting discrete Asian options, the similar formulas hold
{P, +(n-1)S}/n-K
| 1 R(n i)l

ifR=1

vals.R)= = _)/n-K} ifR>1

RY(P, +SR

when P, >nK . Otherwise, linear interpolatlon is computed from the two
bracketing running sums' corresponding option values to obtain :
V((i+D!1,Su' P, +Su'"?) =

aV [(i+1)|,8u'2',(sl —1)%}.,.(1_%)\/ L(i+1)|,8u|2|,sl (n+1)K]'

k.

i+1, j+ i+1, j+l

156



An Efficient Binomial Method for Pricing Asian Options

where 0<¢, <1 for 1=0,1,...,1.
Now let us apply cell averaging algorithm to this discrete model over the cells

on the X -axis as in Section 2.2. For example, the cell-averaged payoffs at expiry
for standard discrete Asian call option are computed as follows:

1 x+h 1

— [ max(—(PJrex)—K,Oj dx,

2h Jx-h n+1
where X =InSu'™® for S, the stock price at t=(n—1)IAt. Algorithm 1
shows the cell averaging tree algorithm for pricing the European standard discrete

Asian call option based on method of Hsu and Lyuu (2011) method.

Algorithm 1 (HL-CA) Pricing European standard discrete Asian call option using
Hsu and Lyuu model with cell averaging method
Require: Sy, K.r,0.7.n,1,¢c,u, d, R;

L At=7/(nl);p:=(R—d)/(u—d); h:=Inu;

2: forj=0—=(n—1)Ido > Calculate payoff for last step

3: Let P,,_ ;[-] be running sums for N(n — 1, ):
4: Let § = Spu(m—HI-2;
5: foril=0—TIdo
6: Set z* = In(Su!~?);
7. A = &[5 max(Zi (P[] + ®) — K,0) dz
8: end for
9 ClI[ =R, ()P0 - p)'AL[]
10: end for
11: fori =(n—2) = 0do > Update option value using backward induction
12: for j =0— il do
13: Let P, ;[-] be running sums for N (3, 7):
14: Set S = Spuil—2i;
15: foril=0—1do
16: if (P[] + Su/~?) > (n+ 1)K then
17: V[jl[] == R-(n—i-DI ((pi,j [+ suf—ﬂ%) [(n+1) - K)
18: else
19: Let oy be such that
20: P[]+ Su'=? = ayPyy1jalsi — 1] + (1 — 1) Py jsa[si]
21: for some 0 < s; < Kjp1j41;
2: VL] = eaCli + (s — 1] + (1 — o) Cl5 + I [s1]
23: end if
24: end for
25: CLll = RS, (D' (1 = p)'VIIT
26: end for
27: end for
28: C[1][1]; > C[1][1] is the option price

3.2.  The Continuous Asian option

Now we consider the case of a continuously monitored Asian option. The
payoff for continuously monitored Asian call option with strike price K at the
expiry date T is given by the following :
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1 e7
ma{?josf( ¥d a{ (9)
Let us consider Hull and White (1993) binomial model. As explained above,

pricing of Asian option using binomial tree produces 2" possible paths for each
time step N . Hull and White (1993) proposed a binomial model for continuous
Asian options to solve this problem. They chose the representative average values

of the form S,e*™ for each node, where h is a fixed constant, and S; =S

is the known initial asset price. Let A be the representative averages, and let

A™ and A™ be the minimum and maximum representative average,

respectively at time iAt, i=12,---,n. Then m s the smallest integer chosen
to satisfy by following inequalities :

min -m 1 = Amin
A =Se hém(lAfl +dS; 1),

1 ..
max =g e™ > —(IA™ +uS. ... ),
A 0 | +1( A—l |—1,|—1)
See Costabile, Massabo and Russo (2006) for details. We can also compute the
averages of the form S, where k=—m+1,-m+2,...,m—1 for each time

step. Hull and White model also follows the standard lattice binomial method
proposed by Cox, Ross and Rubinstein (1979) and use the backward induction
procedure

V(i,j,k)=e‘“At[pV(i+1,j+1,ku)+qV(i+1,j,kd)].
V(i+1 j+1k,) is generated by using linear interpolation as follow. First,

[(i +1)A +uSi1j]/(i +2) iscomputed and let A be the smallest representative
average greater than [(i+1)A +uSiJ/(i+2). Then V(i+1, j+1k,) is the
interpolation between two option values associated to A _;, and A, . The value
V(i+1 j+1k,) isderived in asimilar way.

Now, let us modify Hull and White model for improvement by using cell
averages in Section 2.2. For instance, we replace the payoff in of Hull and White
model max(A, —K,0) for the representative averages A, at the last time step
with

1 Soekh+a
z S —ar
where « is fixed constant and k represents all integers between —m and m.

Algorithm 2 shows the cell averaging tree algorithm for pricing the European
continuous Asian call option based on method of Hull and White (1993).

max{(—K ,0) (10)
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Algorithm 2 (HW-CA) Pricing European continuous Asian call option using Hull
and White binomial model with cell averaging
Require: Sy, K,r,0,T,n,h,u,d;

11 At :=T/n;p:= ("™ —d)/(u — d);

2. fori=0—ndo o Find m for each time step
3 Find the smallest m such that simultaneously satisfies

4 A;mm = Soe_mh < H—Ll (EA:TII =+ dsi_lio),

5. AT = Spemh > L (AT +uS; ;).

6: M][i] == m;

7: end for

8 fori=0—ndo r- Calculate payoff for last step
9: for j = —M[n] = M|[n] do

1o Clll] == 2 [ 2 max(x — K, 0)dz;

[BE end for

12: end for

13 fori=n—1— 0do > Update value using backward induction
14; forj=0—ido

15: Set S = SpuidJ:

16: for s = —M][i] — M][i] do

17: Avg, = (i4;[s] + uS)/(i +1);

18: Let [ be such that 4;[I] < Avg, < Al +1];

19: Let o be such that Avg, = aA;[l] + (1 — a)A;[l + 1];

20: Cy =aC[j|l] + (1 —a)C[4]ll + 1];

21: Avgy := (iA;i[s] + dS) /(i + 1);

22: Let [ be such that A;[I] < Avgy < A;[l + 1];

23; Let o be such that Avgg = aA;[l] + (1 — a)A;[I+1];

24: Cq = aC[j]lI] + (1 — a)C[H][l + 1];

25: V0jl[s] == e "™ (pCy + (1 — p)Ca):

26: end for

27: end for

28: cC=V;

29: end for

30: C[1][1]; > C[1][1] is the option price

4. Numerical Experiments

This section gives numerical results of cell averaging when applied to exotic
options such as Bermudan option or path-dependent options including Discrete
forward starting Asian option and Continuous Asian option. We find that the cell-
averaged values are more accurate than other schemes in the sense that these
values fall in the interval containing the exact value faster (Bermudan option) or
converge to a limiting value faster (path-dependent Asian options). Section 4.1
shows that cell averaging can be used independently to derive a cell averaging tree
method. Section 4.2 and Section 4.3 show that cell averaging can be easily
combined with other existing tree methods as well. Section 4.2 shows that cell
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averaged values are so smooth that the Richardson extrapolation can be used
further to improve the accuracy. Section 4.3 shows that cell averaging can be
extended to price even American options with ease.
4.1. Bermudan option

In this section, we implement the cell averaging method to construct a tree

method to price the Bermudan call option with the initial stock price S, =100,
the risk-free interest rate r =0.05, the dividend q =0.1, the volatility o =0.2,

strike price K =100 and the maturity 7 =3. When there are m=2 exercising
points, Anderson and Broadie (2004) provided using a binomial method with
n=2000 time steps a upper bound of 7.23 and a lower bound of 7.08 for the
option price whose exact value is 7.18. See Table 1. See also Anderson and
Broadie (2004) for the computational results by Anderson and Broadie and the
explanations on them. The proposed cell-averaged values fell into this bound with
as low as n=200 time steps. In addition, the bound of Anderson and Broadie
has the width of 0.15 with n=2000 time steps while the variation of cell-
averaged values for 400<n<2000 is only 0.03, which implies that the
proposed cell averaging scheme converges fast. Similar results are observed for the
Bermudan option with m =10 exercising points and the American option.

n m=2 m=10 American
50 6.8466 7.5856 7.7360
100 6.9833 7.7896 7.9557
200 7.0855 7.8837 8.0645
400 7.1316 7.9362 8.1199
1000 7.1602 7.9629 8.1532
1500 7.1664 7.9705 8.1605
2000 7.1682 7.9732 8.1642
AB(n = 2000) [7.08,7.23] [7.81,8.09] [7.98, 8.30]
MC-exact 7.18 7.98 8.17

Table 1 : Parameters: The initial stock price S(0) =100, the risk-free interest
rate r=0.05, the dividend q=0.1, the volatility o=0.2, strike price

K =100 and the maturity T =3 for Bermudan call option and m is the
number of discrete exercising points. AB represents the lower and upper bounds
for the option price by Anderson and Broadie (2004) using a binomial lattice with
n=2000 time steps and f =1.06. f gives the ratio of the critical exercise

price under the suboptimal policy to the optimal critical exercise price (See
Anderson and Broadie (2004) for details). Anderson and Broadie also presented
exact values (MC-exact) in Anderson and Broadie (2004).
4.2. Discrete Asian option

respectively. Since cell averaging reduces oscillations as explained in Section
2.2, the cell averaged values can be later improved by the Richardson
extrapolation. Table 2 shows the comparison of several numerical schemes by
Vecet, Tavella and Randall (TR), Curran, Hsu and Lyuu (HL) with the cell
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averaging modification of HL (HL-CA) using the Algorithm 1, and the Richardson
extrapolation of HL-CA method (HL-CA*) for the initial price S, =95,100,105

and various values of the number of monitor points n. The number of time steps
N =nl. See Hsu and Lyuu (2011) for detailed explanations on those schemes
including the parameters used for the simulations.

In Table 2, for S, =95, the variations in HL-CA* method from n=250 to

n=500 and from n=500 to n=1000 are only 0.002 and 0.001,
respectively. On the other hand, corresponding variations in other methods are

about 0.02 and 0.01. Similar differences are observed for S, =100 or S, =105.

Thus, the application of cell averaging results in sufficiently smooth convergence
and the additional application of the Richardson extrapolation (HL-CA*) produces
very rapid convergence. The proposed method is, in this sense, very competitive
with many other existing methods.

So 7 Vecer TR Curran HL HL-CA HL-CA*

95 10 0.2228 9.2149 9.2197 9.2209 8.326652102 10.057893972
25 8.7080 8.6974 8.7053 8.7137 8.570829831 8.637790724
50 8.5367 8.5383 8.5340 8.5341 8.504213511 8.437597191
125 8.4339 8.4304 8.4314 8.4335 8.429317398 8.377522888
250 8.4001 8.3972 8.3972 8.4003 8.399090474 8.368863550
500 8.3826 8.3804 8.3801 8.3831 8.382987496 8.366884518
1000 8.3741 8.3719 8.3715 8.3745 8.374417419 8.365847341

100 10 12.0420 12.0348 12.0390 12.0425 11.128581650 13.015832655
25 11.4906 11.4803 11.4881 11.4952  11.354548719 11.412606818
50 11.3068 11.2982 11.3043 11.3079 11.275061820 11.195574920
125 11.1967 11.1929 11.1940 11.1959 11.192063016 11.134621797
250 11.1600  11.1573  11.1572 11.1602 11.159164761 11.126266506
500 11.1416  11.1392  11.1388 11.1417 11.141612382  11.124060003
1000 11.1322 11.1300 11.1296 11.1325 11.132411787 11.123211192

105 10 15.2234  15.2168 15.2202 15.2225 14.306824430 16.389334632
25 14.6510 14.6415 14.6483 14.6553 14.521862965 14.555769035
50 14.4601 14.4519 14.4575 14.4621 14.430821701 14.339780438
125 14.3455  14.3424  14.3430 14.3493  14.341651015  14.280567994
250 14.3073 14.3054 14.3048 14.2982 14.306971212  14.272291408
500 14.2881 142866  14.2857 14.2878 14.288557498 14.270143784
1000 14.2786 14.2771 14.2762  14.2865 14.279030723  14.269503949

Table 2 : Parameters: A discrete forward starting Asian call option is considered
with the strike price K =100, the time to maturity = =1, the volatility o =0.4,
the interest rate r =0.1, and the dividend rate is not considered. Parameters for
numerical schemes: intraday period | =10 and the average number of states per
node ¢=50 for Hsu and Lyuu (2011) are considered. The table shows the
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comparison of various numerical schemes by Vedef, Tavella and Randall (TR),
Curran, Hsu and Lyuu (HL) with the cell averaging modification of HL (HL-CA)
using the Algorithm 1, and the Richardson extrapolation of HL-CA method (HL-

CA*) for the initial price S; =95,100,105 and various values of the number of

monitor points N (and the number of time steps N =nl)
4.3. Continuous Asian option

In this section, we now apply the cell averaging method to value another path-
dependent option, a continuous Asian call option, based on the Hull and White
(1993) method and then extend it to value an American option.

The initial stock price S, =50, strike price K =50, risk-free interest rate
r=0.1, volatility o =0.3, expiry date T =1, and dividend rate q=0 for
European Asian call option. The parameters for numerical scheme by is
h=0.001. Figure 3 shows the errors in the Hull and White binomial method and
the cell averaging Hull and White method as the number n of time steps
increases, when o =0.5 is used for the Algorithm 2. The solution computed by
Monte Carlo simulations based on 10~ time steps and 10° simulation runs is
used when the error is measured, which means that Monte Carlo value has statistic
error of O(10™*). The figure shows that the error from the cell averaged values
decreases to zero faster. Table 3 shows the option values from Hull and White
binomial method (HW) and the cell averaging HW method (HW-CA) using the
Algorithm 2 with « =0.5,0.6,0.7, and 0.8 as the number of time steps, n,

increases. The values in parenthesis are the errors. We see that the convergence of
the cell averaging HW-CA values is faster than that of HW values.

0.016 T

N - - ~Hull &White
\ — Averaged Hull&White | |

0.014f "

0.012

0.01F

0.008

Error

0.006

0.004

0.002F

0 L I L I I L
20 40 60 80 100 120 140 160

Number of steps
Figure 3 : Parameters: the initial stock price S, =50, strike price K =50,
risk-free interest rate r=0.1, volatility o=0.3, expiry date T =1, and
dividend rate q=0 for European Asian call option. The parameters for
numerical scheme by Hull and White (1993) and Algorithm 2 are h=0.001 and
a=0.5. The figure shows the errors in option values from Hull and White
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binomial method and the cell averaging HW method using the Algorithm 2 as the
number of time steps, N, increases.

n

HW

a=0.5

HW-CA

a=0.6

a=0.7

a=0.8

20
40
60
80

4.5120 (0.0157)
4.5194 (0.0083)
4.5221 (0.0056)
4.5235 (0.0042)

45137 (0.0140)
4.5211 (0.0066)
4.5238 (0.0039)
4.5252 (0.0025)

45145 (0.0132)
4.5219 (0.0058)
4.5245 (0.0032)
4.5259 (0.0018)

45153 (0.0124)
4.5227 (0.0050)
4.5254 (0.0023)
4.5268 (0.0009)

45163 (0.0114)
4.5238 (0.0039)
4.5264 (0.0013)
4.5278 (0.0001)

4.5277

Table 3: Parameters: the initial stock price S, =50, strike price K =50, risk-

free interest rate r =0.1, volatility o =0.3, expiry date T =1, and dividend
rate q=0 for European Asian call option. The parameters for numerical scheme
by Hull and White (1993) and Algorithm 2 are h=0.001 and
a =0.5,0.6,0.7,0.8. The table shows the option values from Hull and White bi-
nomial method (HW) and the cell averaging HW method (HW-CA) using the Al-
gorithm 2 as the number of time steps, n, increases. The values in parenthesis are
the errors. The solution computed by Monte Carlo simulations (MC) based on
10 time stepsand 10® simulation runs is used when the errors are measured.

A simple extension of the Algorithm 2 for an exercise of the option results in
Table 3.

n HW HW-CA

a=05 a=06 aoa=07 a=038
20 48127 48136 4.8142 4.8149 4.8158
40  4.8881 4,8891 4.8896 4.8902 4.8910
60 49174 49185 49190 49196 4.9204
80 49336 49346 49351 49357 4.9365

Table 4: Parameters: the initial stock price S, =50, strike price K =50, risk-

free interest rate r=0.1, volatility o =0.3, expiry date T =1, and dividend
rate q=0 for American Asian call option. The parameters for numerical scheme

by Hull and White (1993) and Algorithm 2 are h=0.001 and
a =0.5,0.6,0.7,0.8. The table shows the option values from Hull and White

binomial method (HW) and the cell averaging HW method (HW-CA) using the
Algorithm 2 as the number of time steps, n, increases.

The cell averaging method can be easily extended to American options. Table 4
considers an American Asian call option with the same parameters as those for a
European Asian call option above using the Hull and White method and the cell
averaging Hull and White model.

5. Conclusions

We propose the cell averaging method for pricing the exotic options, in

particular path-dependent Asian options. Cell averaging reduces the oscillations of
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the tree method and thus improves the accuracy. It can be used to derive an
independent tree scheme or to be combined with existing methods. It can be even
combined with the extrapolation as in Section 4.2 to enhance the accuracy using
the fact that the corresponding result is smooth or it can be easily extended to value
American path-dependent options as in Section 4.3.
Algorithms 1 and 2 show that the introduction of cell averaging does not
increase computational loads much, while numerical experiments validate that cell
averaging improves the accuracy of Hsu and Lyuu method and Hull and White
method pricing path-dependent Asian options. For instance, cell averaging gives
better representative averages than those proposed by Hull and White.
We are currently working on mathematical analysis on the order of
convergence of HL-CA and HW-CA methods for path-dependent Asian options.
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